Number and place value	- read, write, order and compare numbers to at least 1000000 and determine the value of each digit - count forwards or backwards in steps of powers of 10 for any given number up to 1000000 - interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero - round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000 - solve number problems and practical problems that involve all of the above - read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	Pupils identify the place value in large whole numbers. They continue to use number in context, including measurement. Pupils extend and apply their understanding of the number system to the decimal numbers and fractions that they have met so far. They should recognise and describe linear number sequences, including those involving fractions and decimals, and find the term-to-term rule. They should recognise and describe linear number sequences (for example, $3,3,4,4 \ldots$), including those involving fractions and decimals, and find the term-toterm rule in words (for example, add $1 / 2$).
Number - addition and subtraction	- add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) - add and subtract numbers mentally with increasingly large numbers - use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	Pupils practise using the formal written methods of columnar addition and subtraction with increasingly large numbers to aid fluency. They practise mental calculations with increasingly large numbers to aid fluency (for example, 12462 $2300=10162$).
Number multiplication and division	- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers - know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers - establish whether a number up to 100 is prime and recall prime numbers up to 19 - multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers - multiply and divide numbers mentally drawing upon known facts - divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context - multiply and divide whole numbers and those involving decimals by 10,100 and 1000 - recognise and use square numbers and cube numbers, and the notation for squared () and cubed () - solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes - solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign - solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	Pupils practise and extend their use of the formal written methods of short multiplication and short division (see Mathematics Appendix 1). They apply all the multiplication tables and related division facts frequently, commit them to memory and use them confidently to make larger calculations. They use and understand the terms factor, multiple and prime, square and cube numbers. Pupils interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (for example, $98 \div 4=98 / 4=24 \mathrm{r}$ $2=241 / 2=24.5 \approx 25)$ Pupils use multiplication and division as inverses to support the introduction of ratio in year 6, for example, by multiplying and dividing by powers of 10 in scale drawings or by multiplying and dividing by powers of a 1000 in converting between units such as kilometres and metres. Distributivity can be expressed as $a(b+c)=a b+a c$. They understand the terms factor, multiple and prime, square and cube numbers and use them to construct equivalence statements (for example, $4 \times 35=2 \times 2 \times 35$; $3 \times 270=3 \times 3 \times 9 \times 10=9 \times 10)$ Pupils use and explain the equals sign to indicate equivalence, including in missing number problems (for example, $13+24=12+25 ; 33=5 \mathrm{x})$.

properties of shapes	cuboids, from 2-D representations - know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles - draw given angles, and measure them in degrees (o) - Identify: - angles at a point and one whole turn (total 360o) - angles at a point on a straight line and 21 a turn (total 180o) - other multiples of 900 - use the properties of rectangles to deduce related facts and find missing lengths and angles Distinguish between regular and irregular polygons based on reasoning about equal sides and angles.	They use conventional markings for parallel lines and right angles. Pupils use the term diagonal and make conjectures about the angles formed between sides, and between diagonals and parallel sides, and other properties of quadrilaterals, for example using dynamic geometry ICT tools. Pupils use angle sum facts and other properties to make deductions about missing angles and relate these to missing number problems.
Geometry - position and direction	- identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	Pupils recognise and use reflection and translation in a variety of diagrams, including continuing to use a 2-D grid and coordinates in the first quadrant. Reflection should be in lines that are parallel to the axes.
Statistics	- solve comparison, sum and difference problems using information presented in a line graph - Complete, read and interpret information in tables, including timetables.	Pupils connect their work on coordinates and scales to their interpretation of time graphs. They begin to decide which representations of data are most appropriate and why.

