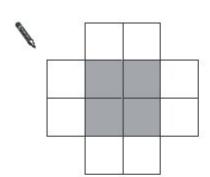
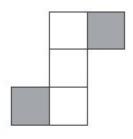
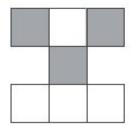
Circle the **two** fractions that are **greater than** $\frac{1}{2}$

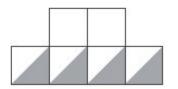
<u>6</u> 10 $\frac{5}{8}$

3 10

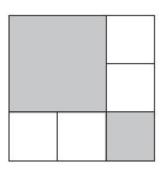

1 mark




These diagrams are all made of squares.


Look at each diagram.

Put a tick (\checkmark) if exactly $\frac{1}{3}$ of it is shaded. Put a cross (\checkmark) if it is not.




2 marks

3
_

The diagram is made of squares.

What fraction of the diagram is shaded?

1 mark

4

Write the missing numbers.

One is done for you.

Improper fraction	Mixed number
$\frac{7}{4}$	1 ³ / ₄
2	5 1 2
<u>17</u> 5	3

2 marks

5

Calculate $\frac{3}{4}$ of 840

1 mark

,	
t	Ď

Karen makes a fraction using two number cards.

She says,

'My fraction is equivalent to $\frac{1}{2}$ One of the number cards is 6'

What could Karen's fraction be?

Give both possible answers.

$$\frac{1}{5} \times 70 =$$

1 mark

2 marks

8

Here are some number cards.

Use **two** of the cards to make a fraction which is **less than** $\frac{1}{2}$.

1 mark

How much less than 1 is your fraction?

1 mark

9

$$\frac{1}{9} + \frac{1}{3} =$$

1 mark

10

$$1\frac{1}{3} \times 2 =$$

1 mark

11

$$\frac{5}{6} \times 24 =$$

1 mark

Calculate $\frac{3}{8}$ of **980**

1 mark